a2 United States Patent

Marinet et al.

US009311477B2

(10) Patent No.: US 9,311,477 B2
(45) Date of Patent: Apr. 12,2016

(54) METHOD AND DEVICE FOR FAULT
DETECTION

(71) Applicants:Proton World International N.V.,
Zaventem (BE); STMicroelectronics
(Rousset) SAS, Rousset (FR)

(72) Inventors: Fabrice Marinet, Chateuneuf le Rouge
(FR); Jean-Louis Modave, Ottignies
(BE); Gilles Van Assche,
Woluwe-St-Lambert (BE); Ronny Van
Keer, Hoeilaart (BE)

(73) Assignees: Proton World International N.V.,
Amsterdam (NL); STMicroelectronics
(Rousset) SAS, Rousset (FR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 301 days.

(21) Appl. No.: 13/715,157

(22) Filed: Dec. 14, 2012

(65) Prior Publication Data
US 2013/0159791 Al Jun. 20, 2013

(30) Foreign Application Priority Data
Dec. 15,2011 (FR) coeoeoeneevieninececciercenae 11 61673
(51) Imt.ClL
GO6F 11/00 (2006.01)
GO6F 21/55 (2013.01)

(52) US.CL
CPC GO6F 21/554 (2013.01); GOGF 2207/7219
(2013.01)
(58) Field of Classification Search
CPC GOG6F 11/0709; GO6F 11/0778; GO6F
11/079; GOGF 11/0793; GOG6F 11/3466;
GOG6F 2207/7219; GO6F 2207/7223
USPC ittt 714/37, 48
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,111,126 B2 9/2006 Biles et al.
7,848,515 B2 12/2010 Dupaquis et al.

(Continued)

FOREIGN PATENT DOCUMENTS

FR 2841015 A1 12/2003
FR 2919739 Al 2/2009
OTHER PUBLICATIONS

Dictionary definition for “processor register” from wilipedia using
the way back machine, retrieved from https://web.archive.org/web/
20111107124250/http://en.wikipedia.org/wiki/Processor_register,
from date Nov. 7, 2011.*

Bar El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”,
Proceedings of the IEEE, vol. 94, No. 2, Feb. 2006.*

French Search Report, dated Jul. 13,2012 for French application No.
1161673, 7 pages.

(Continued)

Primary Examiner — Yair Leibovich
(74) Attorney, Agent, or Firm — Seed IP Law Group PLLC

(57) ABSTRACT

The disclosure concerns a method implemented by a process-
ing device. The method includes performing a first execution
by the processing device of a computing function based on
one or more initial parameters stored in a first memory device.
The execution of the computing function generates one or
more modified values of at least one of the initial parameters,
wherein during the first execution the one or more initial
parameters are read from the first memory device and the one
or more modified values are stored in a second memory
device. The method also includes performing a second execu-
tion by the processing device of the computing function based
on the one or more initial parameters stored in the first
memory device.

22 Claims, 7 Drawing Sheets

_402A

RECEIVE READ INSTRUCTION
FOR ADDRESE ADDR 3

7

4008

SEARCH MEMORY AREA 3GTA

g

/l' _4mc

T W
N .
000 \\\ ATA FOUND ,'//,/ l AR
{ | S - \
) 4 N

QUTPUY DATA VALUE

FORWARD READ
INSTRUCTION TO
MEMORY AREA 3084

US 9,311,477 B2
Page 2

(56)

7,856,523

8,688,995
2005/0157871
2006/0045264
2006/0212770
2007/0019805
2007/0177720
2007/0188355
2007/0286413
2009/0044265
2009/0323956
2011/0041013
2011/0119532
2011/0119762
2011/0225432
2013/0103972
2013/0305098

References Cited
U.S. PATENT DOCUMENTS

B2 12/2010 Bittner, Jr.

B2 4/2014 Teglia

Al 7/2005 Komano et al.
Al 3/2006 Kocher et al.

Al 9/2006 Fischer et al.

Al 1/2007 Karpovsky et al.
Al 8/2007 Bevan et al.

Al 8/2007 Baek

Al 12/2007 Derouet

Al* 2/2009 Ghoshetal.

Al 12/2009 Tsunoo et al.

Al* 2/2011 Ingimundarson

Al 5/2011 Teglia

Al* 572011 Teglia ...ccoovvvnnnnns

Al* 9/2011 Trichina ...

Al* 4/2013 Ozeretal. ...
Al* 112013 Keromytis

......... 726/14
......... 714/40

......... 726/23

713/190

........... 714/2
GO6F 11/08

714/38.1

OTHER PUBLICATIONS

Bar-El et al., “The Sorcerer’s Apprentice Guide to Fault Attacks,”
retrieved from http://web.archive.org/web/20041016071838/eprint.
iacr.org/2004/100, Oct. 16, 2004, XP002329915, 13 pages.

Bertoni et al., “Error Analysis and Detection Procedures for a Hard-
ware Implementation of the Advanced Encryption Standard,” IEEE
Transaction on Computers 52(4):492-505, Apr. 2003.

Karpovsky et al., “Robust Protection against Fault-Injection Attacks
on Smart Cards Implementing the Advanced Encryption Standard,”
Proceedings of the 2004 International Conference on Dependable
Systems and Networks, Jun. 28-Jul. 1, 2004, Piscataway, NJ, 9 pages.
Karri et al., “Concurrent Error Detection Schemes for Fault-Based
Side-Channel Cryptanalysis of Symmetric Block Ciphers,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 21(12):1509-1517, Dec. 2002.

Moratelli, Carlos R. et al., “A Cryptography Core Tolerant to DFA
Fault Attacks,” Journal Integrated Circuits and Systems 2007; v.2, n.
1, pp. 14-21.

* cited by examiner

U.S. Patent Apr. 12,2016 Sheet 1 of 7 US 9,311,477 B2

104 100
— £
INSTR MEM _
5 106
' 102
108 : = EXECUTION || 106A
— SPACE ~
, o PROCESSING T e
INPUTS/QUTPUTS DEVICE s s (INITIAL STATELL !
FINAL STATE || 106C

Fig 1

U.S. Patent Apr. 12,2016 Sheet 2 of 7 US 9,311,477 B2

L 201

INITIALIZE MEMORY

k:

STORE INITIAL STATE -~

2

4

CALL COMPUTING FUNCTIONT

204

3

STORE FINAL STATE ™

206

k-4
]
RESTORE INITIAL STATE +-_208
N] 210
CALL COMPUTING FUNCTION 2

k4

COMPARE FINAL STATE
WITH STORED FINAL STATE

I

2

Fig 2

US 9,311,477 B2

Sheet 3 of 7

Apr. 12,2016

U.S. Patent

¥

£ 84
€ £ Vit Tl
mWM/,mmm \ £ oore
™ \ N ™ \
LoDl) |\
Viva) VIV B
Viva Yiva| _ HIIAEA
/ ; ww W "\\ ﬂ, mmwm
s _, NA)
V90E gp¢ we T oy
6l¢ 70§
A L WHN YLSNI
00¢ pOt

SLOdLOO/MSLOdN]T

b
!

e

-
07t

U.S. Patent Apr. 12,20

401

INITIALEZE MEMORY

402

CALL COMPUTING FUNCTION
WITH INTERMEDATE
MEMORY ENABLED

404

CALL COMPUTING FUNCTION
WITH INTERMEDIATE
MEMORY DISABLED

g p—

COMPARE RESULTS

Fig 4A

16 Sheet 4 of 7

US 9,311,477 B2

_402A

RECEIVE READ INSTRUCTION
FOR ADDRESS ADDR 5

e

4008
3 y el
SEARCH MEMORY ARFA3NTA
/}'\\ 40c
. /”’, 'ﬂ\‘::\ \

4(}25 S DATA FOUND ¥ T 4{}:‘2E

\) 3 \\\/ ” ty \

T AT A TS FORWARD READ

OUTPUT DATA VALUE INSTRUCTION TO

Fig 4B

MEMORY AREA 3084

US 9,311,477 B2

Sheet S of 7

Apr. 12,2016

U.S. Patent

g—p! BLOALOO/SLON]

¢ &g
| L
slegle Vot e o1e [
Vo0E Lo Y vl
. Viv Q.w ,‘ Yivd A
] M Viva HOIATL
Qe 4 ~ragay| DNISSHOOUd
| S S0¢
/ Wm M ! ‘ ~ NH
90¢ LOE l6T¢ 5
905 o VO s
\v %;w;;, NOLLVOLITIHEA WHN WLSNI
00% 7067

-
g

U.S. Patent Apr. 12,2016 Sheet 6 of 7 US 9,311,477 B2

NITIALIZE MEMoRY .50
START CHECKSUM 1502
604
CALL COMPUTING FUNCTION| ™
WITH INTERMEDIATE
MEMORY ENABLED
STOP AND STORE CHECKSUM - 806
START CHECKSUM P08
610

CALL COMPUTING FUNCTION
WITH INTERMEDIATE
MEMORY DISABLED

-

STOP CHECKSUM AND VERIFY-_ 612

Fig 6

U.S. Patent Apr. 12,2016 Sheet 7 of 7 US 9,311,477 B2

307 e e
'\ | =3 -,
3 | /‘_/.;34 02
J I T H
INTMEM | gy | 306
\\ E -
; 706 | N
oy oy |
L ! 706
& i &
TO 302 % S
00

US 9,311,477 B2

1
METHOD AND DEVICE FOR FAULT
DETECTION

BACKGROUND

1. Technical Field

The present disclosure relates to the field of fault detection,
and in particular to a device and method for executing a
computing function protected against fault attacks.

2. Description of the Related Art

Integrated circuits may comprise circuitry that is consid-
ered sensitive in view of the security of the data that it pro-
cesses, such as authentication keys, signatures, etc., or of the
algorithms it uses, such as encryption or decryption algo-
rithms. Such information should not be communicated to or
otherwise be detectable by third parties or unauthorized cir-
cuits.

A common process for fraudulently discovering informa-
tion manipulated by an integrated circuit involves detecting,
within the circuit, the zones that are used during the process-
ing of that information. For this, the circuit is activated or
otherwise placed in a functional environment, and data to be
processed by the circuit is introduced at an input. Then, while
the data is processed, for example, the surface of integrated
circuit is swept by a laser to inject faults in the functioning of
the circuit, and in particular to flip the voltage state stored at
one or more nodes of the circuit. While analyzing in parallel
the outputs of the circuit, the zones that are used to process the
data may be determined. Having localized such zones, the
pirate can then concentrate the attacks on these zones in order
to discover the secret information.

The injection of faults can also be used to bypass security
checks or to infer secret information through the modification
of the data being processed.

One solution for protecting against faults attacks is to pro-
vide two processing devices arranged to operate in parallel on
the same input data. By comparing the results generated by
these two devices, the injection of a fault can be detected.
However, such a solution comes at a relatively high hardware
cost.

An alternative solution that avoids the use of two process-
ing devices is to execute the sensitive function twice using the
same processing device and with the same input data. How-
ever, a drawback of existing implementations of this type of
solution is that they are implemented with relatively high
memory resources.

BRIEF SUMMARY

It is an aim of embodiments described herein to at least
partially address one or more needs in the prior art.

According to one aspect of the present disclosure, there is
provided a method implemented by a processing device com-
prising: performing a first execution by said processing
device of a computing function based on one or more initial
parameters stored in a first memory device, the execution of
said computing function generating one or more modified
values of at least one of said initial parameters, wherein
during said first execution said one or more initial parameters
are read from said first memory device and said one or more
modified values are stored in a second memory device; and
performing a second execution by said processing device of
said computing function based on said one or more initial
parameters stored in said first memory device.

According to one embodiment, during said second execu-
tion said one or more initial parameters are read from said first

10

15

20

25

30

35

40

45

50

55

60

65

2

memory device and said one or more modified values are
stored in said first memory device.

According to another embodiment, before performing said
first execution, the method further comprises storing said one
or more initial parameters in said first memory device.

According to another embodiment, the method further
comprises, during said first execution of said computing func-
tion: receiving by said second memory device a write instruc-
tion associated with a first address in said first memory device
and with a first data value; storing said first data value in said
second memory device and storing said first address as an
indexing value in said second memory device in association
with said first data value; receiving by said second memory
device a read instruction associated with said first address;
locating said first data value in said second memory device
based on said first address; and outputting said first data value
from said second memory device.

According to another embodiment, the method further
comprises comparing at least one value generated during said
first execution of said computing function with at least one
value generated during said second execution of said com-
puting function.

According to another embodiment, said comparing opera-
tion comprising reading said at least one value generated
during said first execution from said second memory device
and reading said at least one value generated during said
second execution from said first memory device.

According to another embodiment, the method further
comprises: computing a first verification value based on a
plurality of values generated by said first execution of said
computing function; computing a second verification value
based on a plurality of values generated by said second execu-
tion of said computing function; comparing said first and
second verification values.

According to another embodiment, said first verification
value comprises the sum of said plurality of values generated
by said first execution and said second verification value
comprises the sum of said plurality of values generated by
said second execution.

According to another embodiment, said first verification
value is computed as a cyclic redundancy check based on said
plurality of values generated by said first execution, and said
second verification value is computed as a cyclic redundancy
check based on said plurality of values generated by said
second execution.

According to a further aspect of the present disclosure,
there is provided a method of detecting the occurrence of a
fault attack during the execution of a computing function,
comprising the above method.

According to a further aspect of the present disclosure,
there is provided a computing device comprising: a process-
ing device configured to perform first and second executions
of'a computing function based on one or more initial param-
eters, said computing function generating one or more modi-
fied values of at least one of said initial parameters; a first
memory device configured to store said at least one initial
parameter; and a second memory device coupled to said
processing device and to said first memory device; wherein
said processing device is configured to read, during said first
execution, said one or more initial parameters from said first
memory device and to store, during said first execution, said
one or more modified values in said second memory device.

According to one embodiment, said processing device is
configured to read, during said second execution, said one or
more initial parameters from said first memory device and to
store, during said second execution, said one or more modi-
fied values in said first memory device.

US 9,311,477 B2

3

According to another embodiment, said second memory
device comprises an enable input coupled to said processing
device, and said second memory device is configured to for-
ward, when disabled, all write and read instructions to said
first memory device.

According to another embodiment, said second memory
device is configured to receive, during said second execution,
read instructions from said processing device and to forward
said read instructions to said first memory device if they relate
to one of said initial parameters.

According to another embodiment, the computing device
further comprises a verification block adapted to compare at
least one value generated during said first execution of said
computing function with at least one value generated during
said second execution of said computing function.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments are
described with reference to the following drawings, wherein
like labels refer to like parts throughout the various views
unless otherwise specified. The sizes and relative positions of
elements in the drawings are not necessarily drawn to scale.
For example, the shapes of various elements and angles are
not drawn to scale, and some of these elements are enlarged
and positioned to improve drawing legibility. Further, the
particular shapes of the elements as drawn are not intended to
convey any information regarding the actual shape of the
particular elements and have been solely selected for ease of
recognition in the drawings.

The foregoing and other purposes, features, aspects and
advantages of embodiments of the present disclosure will
become apparent from the following detailed description of
embodiments, given by way of illustration and not limitation
with reference to the accompanying drawings, in which:

FIG. 1 illustrates a computing device according to an
example embodiment;

FIG. 2 is a flow diagram showing operations in a method of
executing a computing function according to an example
embodiment;

FIG. 3 illustrates a computing device according to an
embodiment of the present disclosure;

FIG. 4A is a flow diagram showing operations in a method
according to an embodiment of the present disclosure;

FIG. 4B is a flow diagram showing operations for imple-
menting a read instruction according to an embodiment of the
present disclosure;

FIG. 5 illustrates a computing device according to yet a
further embodiment of the present disclosure;

FIG. 6 is a flow diagram showing operations in a method
according to a further embodiment of the present disclosure;
and

FIG. 7 illustrates a memory interface according to a further
embodiment of the present disclosure.

DETAILED DESCRIPTION

Throughout the following description, only those aspects
useful for an understanding of the embodiments of the present
disclosure will be described in detail. Other aspects, such as
the particular computing functions executed by the process-
ing device, have not been described in detail, it being apparent
to those skilled in the art that the embodiments described
herein are applicable to a broad range of computing functions,
for cryptographic applications or other types of applications.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 illustrates an example of a computing device 100
comprising a processing device 102 for executing a comput-
ing function, based on instructions stored in an instruction
memory 104. A memory device 106 is coupled to the pro-
cessing device, and comprises a memory area 106 A provid-
ing an execution space used during the execution of the com-
puting function, a memory area 106B storing a copy of the
initial state of memory area 106 A, and a memory area 106C
storing a final state of memory arca 106A.

One or more inputs/outputs 108 may be provided, such as
keyboards or keypads, displays, etc.

FIG. 2 is a flow diagram showing operations performed
during the execution of the computing function, which is
executed twice using the apparatus 100 of FIG. 1, according
to a solution that has been proposed for detecting a fault
attack.

In a first operation 201, the memory 106, and in particular
the memory area 106A, is initialized. In particular, initial
parameters to be used during the execution of the computing
function are loaded in the memory area 106 A. These param-
eters may include certain data values used during the com-
puting function, which could be predetermined values, and/or
values received on inputs of the computing device 100. They
could also include one or more cryptographic keys.

In a subsequent operation 202, the initial state of the execu-
tion space 106A is copied to the memory area 106B, includ-
ing the initial parameters.

In a subsequent operation 204, the computing function is
called, which involves loading and executing instructions
from the instruction memory 104, and will result in one or
more data values being read from and written to the execution
space provided by memory arca 106 A.

In a subsequent operation 206, after the computing func-
tion has been executed, the final state present in memory area
106 A is stored in the memory area 106C.

The computing function is then executed for a second time.
As an initial operation 208 of the second execution, the initial
state as stored in memory area 1068 is restored in the execu-
tion space 106A.

In a subsequent operation 210, the computing function 210
is called again, involving loading and executing the instruc-
tions again from the instruction memory 104, and will again
result in one or more data values being read from and written
to the execution space provided by memory arca 106 A.

In a subsequent operation 212, the new final state present in
the memory area 106A is compared to the final state stored in
memory area 106C, and any difference between the data
values of these states would indicate the presence of a fault.

A drawback of the process of FIG. 2 is that, due to the
concurrent use of the three memory areas 106A, 1068 and
106C, the memory 106 should be of a relatively large size.

FIG. 3 illustrates a computing device 300 according to an
embodiment of the present disclosure.

Device 300 comprises a processing device 302, which is
coupled to an instruction memory 304 storing instructions of
a computing function to be executed by the processing device
302. A memory device 306 comprises a memory area 306A,
and an intermediate memory device 307 is coupled between
the processing device 302 and the memory device 306, and
comprises a memory area 307A. In particular, memory device
307 receives address (ADDR) values on lines 308 for read
operations, and address and data (DATA) values on line 308
and 310 for write operations, from the processing device 302.
Read data is provided on lines 312 to the processing device
302. Furthermore, memory device 307 forwards address val-
ues for read operations on lines 314, and address and data
values on lines 314 and 316 for write operations. Read data is

US 9,311,477 B2

5

received by memory device 307 from memory device 306 on
lines 318. Memory device 307 for example comprises an
enable input receiving an enable signal EN on line 319 from
processing device 302.

As with the embodiment of FIG. 1, the computing device
300 may comprise one or more inputs/outputs, labeled 320 in
FIG. 3.

Operation of the computing device 300 will now be
described in more detail with reference to the flow diagram of
FIG. 4A. The operations of FIG. 4A are for example imple-
mented under the control of the processing device 302.

In a first operation 401, the memory 306 is initialized. In
particular, as described above with reference to operation 201
of FIG. 2, initial parameters to be used during the execution of
the computing function are loaded in the memory area 306 A.
These parameters may include certain data values used during
the computing function, some of which could be predeter-
mined values, and/or values received by one or more inputs
320 ofthe computing device 300. They could also include one
or more cryptographic keys. Further examples of the initial
parameters include all data forming part of the memory space
used by the computing function, such as global variables and
local variables.

In a subsequent operation 402, the computing function is
called with the intermediate memory 307 enabled via line
319. Execution of the computing function involves loading
and executing instructions from the instruction memory 304,
and will result in the initial parameters stored in memory area
306A being read, and one or more modified values of the
parameters being generated.

With the intermediate memory 307 enabled, all memory
operations originating from the processing device will be first
processed by the intermediate memory 307. Certain write
operations, at least those relating to the initial parameters
stored in memory area 306 A, are not written to memory area
306A but are instead written to the memory area 307A. In
particular, the memory 307A is for example an associative
memory. An associative memory is one in which the stored
data values are each associated with a further indexing value,
and this indexing value is used, during a read operation, to
locate the stored data value to be read. Thus, if a write opera-
tion of a data value D, targets a memory address ADDR, in
memory area 306A, the data value D, is for example written
to memory area 307A, and the address ADDR, is also stored
in memory area 307A as the indexing value associated with
the data value D, . A future read operation relating to address
ADDR, will be directed to memory area 307A, and using
address ADDR, as the indexing value, the data value D, can
be located and read. Thus all read operations relating to data
values that have been stored in memory area 307A will be
read from memory device 307, whereas read operations
directed to any of the initial parameters stored in memory
306A will not be found in memory area 307A, and will
instead be forwarded to the memory arca 306A.

FIG. 4B illustrates an example of operations performed by
the memory device 307, during the execution of the comput-
ing function of operation 402 of FIG. 4A, inresponse to a read
instruction received from the processing device 302 of FIG. 3.
In a first operation 402A, a read instruction for an address
ADDR , of memory area 306A is received by the memory
device 307.

In a subsequent operation 402B, the memory device 307 is
searched, using the address ADDR , as an indexing value.

In a subsequent operation 402C, it is determined whether
or not the indexing value ADDR , generated a hit in memory
device 307. If so, the next operation is 402D, in which the data
value associated with this indexing value in memory area

25

30

35

40

45

55

6

307A is provided as the output to the processing device 302.
Alternatively, if the indexing value ADDR , was not found,
the next operation is 402E, in which the read instruction is
forwarded to memory device 306.

Thus the intermediate memory area 307A provides a
memory space in which data may be written and read during
the first execution of the computing function, while the initial
parameters can be read from the memory area 306A but are
not overwritten.

Referring again to FIG. 4A, in a subsequent operation 404,
the execution of the computing function is repeated by calling
the computing function a second time, but this time with the
intermediate memory disabled, for example by a disable sig-
nal on line 319. When disabled, all memory operations
received by the intermediate memory device 307 are for
example forwarded directly to the memory device 306. This
means that the initial parameters used during the first and
second executions of the computing function are the same,
and in the absence of faults, the second execution of the
computing function should be an identical repetition of the
first execution. In one example, the final state stored in the
memory area 307 A following the first execution of the com-
puting function is not overwritten during the second execu-
tion. The memory area 306A provides the execution space
during the second execution of the computing function, and
once this second execution is completed, the memory area
306A stores the final state.

Inasubsequent operation 406, the results of two executions
of the computing function are compared. For example, it is
verified that the data value stored at each address in the
memory area 307A is identical to the data value of the corre-
sponding address of the memory area 306A. Discrepancies
between corresponding data values in the memory areas
306A, 307A could indicate the injection of a fault in one of
these memories, in the processing device, or in the instruction
memory 304. If the verification indicates the presence of a
fault, a countermeasure may be taken, such as resetting the
processing device, erasing the memory areas 306A, 307A,
and/or incrementing a count value leading to a permanent
deactivation of the processing device if a certain number of
faults is detected.

FIG. 5 illustrates a computing device 500 according to an
alternative embodiment. Device 500 comprises many ele-
ments in common with computing device 300 of FIG. 3, and
those elements have been labeled with like numerals and will
not be described again in detail.

Device 500 comprises a verification block 502 coupled to
receive the address and data values transmitted on lines 308,
310 and 312 between the processing device 302 and the
intermediate memory device 307. Furthermore, the verifica-
tion block 502 may also receive instruction data from the
instruction memory 304 on a line 504, which is coupled to the
connection between the instruction memory 304 and the pro-
cessing device 302. Thus the verification block 502 for
example receives a copy of all instructions loaded to the
processing device 302 during the execution of the computing
functions. The verification block 502 records the data from
these various sources by calculating a checksum value, for
example equal to the sum of all of the values it receives. For
example, assuming that the data values are n-bit values, the
sum could be calculated as the sum, modulo n, of the data
values and address values. The value of n could for example
be between 8 and 64 bits. The verification block 502 for
example calculates a first checksum during the first execution
of'the computing function, and a second checksum during the
second execution of the computing function, and compares
these checksums to verify that they match. If they do not

US 9,311,477 B2

7

match, this would imply the injection of a fault in one of the
memories 304, 306, 307 or into the processing device 302
during the first or second execution.

A modified operation flow based on the use of the verifi-
cation block 502 will now be described with reference to the
flow diagram of FIG. 6. The operations of FIG. 6 are for
example implemented under the control of the processing
device 302.

In a first operation 601, the memory 306 is initialized. In
particular, as described above with reference to operation 401
of FIG. 4 A, initial parameters to be used during the execution
of the computing function are loaded in the memory area
306A.

Then, in a subsequent step 602, the checksum implemented
by the verification block 502 is started, such that from this
moment on, all the data signals and the address signals pro-
vided on the lines 308 to 312, and optionally the instructions
from the instruction memory 304, are summed.

In a subsequent operation 604, in a similar manner to
operation 402 of FIG. 4A, the computing function is called
with the intermediate memory 307 enabled. Thus the memory
area 307A is used as the execution space, and only read
operations relating to the initial parameters are forwarded to
the memory device 306.

In subsequent operation 606, the calculation of the check-
sum by the verification block 502 is stopped, and the value
reached is for example stored for future verification.

In a subsequent operation 608, the checksum is activated
again in preparation for the second execution of the comput-
ing function.

In a subsequent operation 610, the execution of the com-
puting function is repeated by calling it a second time. As with
operation 404 of FIG. 4A, the intermediate memory device
307 is disabled during the second execution during operation
610. Thus, during the second execution, all memory opera-
tions received by the intermediate memory device 307 are for
example forwarded directly to the memory device 306.

The calculation by the verification block 502 of the check-
sum during the second execution of the computing function
could be implemented in a number of different ways. One
option, assuming that the first checksum calculated during the
first execution has been transferred to a separate register/
memory, would be to simply reset the register used to accu-
mulate the checksum, and to calculate the second checksum
in this register. Alternatively, the verification block 502 may
comprise two registers, a first of which is used to accumulate
and store the checksum during the first execution of the com-
puting function, and a second of which is used to accumulate
and store the checksum during the second execution of the
computing function. As a further option, the first checksum
could be calculated by an addition of all the data/address/
instruction values received, and the result could remain in the
same register after the first execution of the computing func-
tion. Then, during the second execution of the computing
function, the data values received by the verification block
502 could be subtracted from the first checksum such that the
value in the checksum register would equal zero by the end of
the second execution if no faults are present.

A subsequent operation 612 of FIG. 6 involves stopping the
checksum and verifying the value, for example by comparing
the first and second checksums and verifying that they are
equal. As previously, if the verification of the checksum indi-
cates the presence of a fault, a countermeasure may be taken,
such as resetting the processing device, erasing the memory
devices 306, 307 and/or incrementing a count value leading to
a permanent deactivation of the processing device 302 if a
certain number of faults is detected.

20

30

35

40

45

55

8

The memory devices 306, 307 could each be implemented
by a RAM (Random Access Memory), such as an SRAM
(Static RAM) or other type of volatile programmable
memory device. Alternatively, the memory device 306 could
be implemented by a non-volatile memory, such as for
example an E*PROM (electronically erasable programmable
read-only memory), as will now be described with reference
to FIG. 7.

FIG. 7 illustrates the memory device 306 and the interme-
diate memory device 307, each of which are coupled to a bus
700, which is also for example coupled to the processing
device 302 (not shown in FIG. 7). Memory device 306 is a
non-volatile memory comprising a non-volatile memory
array 702, which receives control and data signals for read
and write operations from a memory interface module 704 on
control lines 706. The memory interface module 704 is
coupled to the bus 700 for receiving the address and data
signals corresponding to write and read operations, which it
converts to a suitable format for the non-volatile memory
array 702. An enable signal is for example provided on a line
706 from the intermediate memory device 307 to the memory
interface 704, allowing the intermediate memory device 307
to control the activation of the non-volatile memory device
306.

During the first execution of the computing function, for
example corresponding to operations 402 and 604 described
above, the enable line 706 for example deactivates the non-
volatile memory 306, and the intermediate memory 307 per-
forms all read and write operations, unless they concern read
operations of the initial parameters. For example, if the inter-
mediate memory 307 receives a read operation request for an
initial parameter not stored in its memory area 307A, it acti-
vates the memory interface module via line 706 so that the
read operation is processed by the non-volatile memory 704
and the corresponding data is read from the array 702.

During the second execution of the computing function, for
example corresponding to operations 404 and 610 described
above, the enable line 706 for example activates the non-
volatile memory 306, and the non-volatile memory performs
all read and write operations.

An advantage of the embodiments described herein is that
the execution of a computing function may be repeated with
the use of relatively low memory resources. In particular, the
initial parameters are stored only once during the first execu-
tion of the computing function, thereby economizing
memory space. Furthermore, the use of a checksum avoids
saving the entire final state generated during the first execu-
tion of the computing function.

Having thus described a number of embodiments, various
alterations, modifications and improvements will readily
occur to those skilled in the art.

For example, it will be apparent to those skilled in the art
that the particular hardware implementation of the embodi-
ments described herein will depend of the particular applica-
tion, and could include separate memory devices or a single
memory device containing the memory areas 306A, 307A
and the instruction memory 304. Furthermore, the particular
control of the memory device(s) during read and write opera-
tions will depend on the types of memory used.

Itwill also be apparent to those skilled in the art that various
different checksum algorithms could be used to compute the
checksums, a simple addition of the values being just one
example. Furthermore, the checksum could be implemented
by a cyclic redundancy check.

The operations of the various flow diagrams of FIG. 4A, 4B
and 6 may be implemented entirely by software executed by
the processing device 302 of FIG. 3, although certain opera-

US 9,311,477 B2

9

tions, such as enabling or disabling the memory devices 306
and/or 307 and comparing results/checksums may be imple-
mented by a state machine, for example forming part of the
processing device 302.

Furthermore, the various features described in relation to
the various embodiments could, in alternative embodiments,
be combined in any combination.

The various embodiments described above can be com-
bined to provide further embodiments. These and other
changes can be made to the embodiments in light of the
above-detailed description. In general, in the following
claims, the terms used should not be construed to limit the
claims to the specific embodiments disclosed in the specifi-
cation and the claims, but should be construed to include all
possible embodiments along with the full scope of equiva-
lents to which such claims are entitled. Accordingly, the
claims are not limited by the disclosure.

The invention claimed is:

1. A method implemented by a processing device, com-
prising:

performing a first execution by said processing device of a

computing function based on one or more initial param-
eters stored in a first memory device, the first execution
of said computing function generating one or more
modified values of at least one of said initial parameters,
wherein during said first execution said one or more
initial parameters are read from said first memory device
and said one or more modified values are stored in a
second memory device;

performing a second execution by said processing device

of said computing function based on said one or more
initial parameters stored in said first memory device, the
second execution of said computing function generating
one or more second modified values; and

detecting an occurrence of a fault attack based on a difter-

ence between the one or more modified values generated
during the first execution and the one or more second
modified values generated during the second execution,
wherein said one or more initial parameters are read
from said first memory device during said first execution
after searching said second memory device for modified
values of said one or more initial parameters.

2. The method of c¢laim 1, wherein said one or more modi-
fied values are stored in said second memory device in
response to a write operation targeting a memory address of
said one or more initial parameters in said first memory
device.

3. The method of claim 1 wherein during said second
execution said one or more initial parameters are read from
said first memory device and said one or more second modi-
fied values are stored in said first memory device.

4. The method of claim 1, further comprising:

before performing said first execution, storing said one or

more initial parameters in said first memory device.

5. The method of claim 1, further comprising, during said
first execution of said computing function:

receiving by said second memory device a write instruction

associated with a first address in said first memory
device and with a first data value;

storing said first data value in said second memory device

and storing said first address as an indexing value in said
second memory device in association with said first data
value;

receiving by said second memory device a read instruction

associated with said first address;

locating said first data value in said second memory device

based on said first address; and

10

15

20

25

30

35

40

45

50

55

60

65

10

outputting said first data value from said second memory
device.

6. The method of claim 1, further comprising:

comparing at least one value generated during said first
execution of said computing function with at least one
value generated during said second execution of said
computing function.

7. The method of claim 6 wherein said comparing opera-
tion comprises reading said at least one value generated dur-
ing said first execution from said second memory device and
reading said at least one value generated during said second
execution from said first memory device.

8. The method of claim 1, further comprising:

computing a first verification value based on a plurality of
values generated by said first execution of said comput-
ing function;

computing a second verification value based on a plurality
of values generated by said second execution of said
computing function; and

comparing said first and second verification values.

9. The method of claim 8 wherein said first verification
value comprises a sum of'said plurality of values generated by
said first execution and said second verification value com-
prises a sum of said plurality of values generated by said
second execution.

10. The method of claim 8 wherein said first verification
value is computed as a cyclic redundancy check based on said
plurality of values generated by said first execution, and said
second verification value is computed as a cyclic redundancy
check based on said plurality of values generated by said
second execution.

11. A computing device comprising:

a processing device configured to perform first and second
executions of a computing function based on one or
more initial parameters, said computing function gener-
ating one or more modified values of at least one of said
initial parameters;

a first memory device configured to store said at least one
initial parameter; and

a second memory device coupled to said processing device
and to said first memory device;

wherein said processing device is configured to search,
during said first execution, said second memory device
for modified values of said initial parameters, read, dur-
ing said first execution, said one or more initial param-
eters from said first memory device, and to store, during
said first execution, said one or more modified values in
said second memory device, and wherein said process-
ing device is configured to store said one or more modi-
fied values in said second memory device in response to
awrite operation targeting a memory address of said one
or more initial parameters in said first memory device,
wherein said processing device is configured to detectan
occurrence of a fault attack based on a difference
between one or more modified values generated during
the first execution and one or more second modified
values generated during the second execution.

12. The computing device of claim 11 wherein, before
reading said one or more initial parameters from said first
memory device during said first execution, said processing
device is configured to search said second memory device for
modified values of said one or more initial parameters.

13. The computing device of claim 11 wherein said pro-
cessing device is configured to read, during said second
execution, said one or more initial parameters from said first
memory device and to store, during said second execution,
said one or more modified values in said first memory device.

US 9,311,477 B2

11

14. The computing device of claim 11 wherein said second
memory device comprises an enable input coupled to said
processing device, and wherein said second memory device is
configured to forward, when disabled, all write and read
instructions to said first memory device.

15. The computing device of claim 11 wherein said second
memory device is configured to receive, during said second
execution, read instructions from said processing device and
to forward said read instructions to said first memory device
if they relate to one of said initial parameters.

16. The computing device of claim 11, further comprising:

a verification block adapted to compare at least one value

generated during said first execution of said computing
function with at least one value generated during said
second execution of said computing function.

17. A memory configured to store computing instructions,
the computing instructions configured to direct a processor in
a computing device to perform a method of detecting an
occurrence of a fault attack, the method comprising:

storing at least one initial parameter in a first memory

device;

reading the at least one initial parameter from the first

memory device;

executing a computing function a first time, the computing

function arranged to direct execution based on the at
least one initial parameter;

generating in the computing function at least one modified

initial parameter;

storing the at least one modified initial parameter in a

second memory device;

executing the computing function a second time, the com-

puting function arranged to direct execution based on the
at least one initial parameter;

generating in the computing function at least one second

modified initial parameter; and

detecting an occurrence of a fault attack based on a difter-

ence between the at least one modified initial parameter
generated during the first execution of the computing
function and the at least one second modified initial

10

15

20

25

30

35

12

parameter generated during the second execution of the
computing function, wherein the at least one initial
parameter is read from the first memory device during
the first execution of the computing function after the
second memory device is searched for at least one modi-
fied value of the at least one initial parameter.

18. The memory of claim 17 wherein the computing
instructions are configured to direct the processor to perform
the method, the method further comprising:

receiving by the second memory device a first instruction

associated with a first address in the first memory device
and with a first data value;

storing the first data value in the second memory device;

storing the first address as an indexing value in the second

memory device in association with the first data value;
receiving by the second memory device a second instruc-
tion associated with the first address;

locating the first data value in the second memory device

based on the first address; and

outputting the first data value from the second memory

device.

19. The memory of claim 17 wherein detecting the occur-
rence of the fault attack includes combining a plurality of
modified initial parameters using a certain algorithm and
combining a plurality of second modified initial parameters
using the certain algorithm.

20. The memory of claim 19 wherein the certain algorithm
is a summation algorithm or a cyclic redundancy algorithm.

21. The memory of claim 17 wherein storing the at least
one initial parameter in the first memory device and storing
the at least one modified initial parameter in the second
memory device comprise storing the parameters in a single
non-volatile memory device.

22. The memory of claim 17 wherein the computing
instructions are configured to direct the processor to perform
the method, the method further comprising:

asserting a fault indication signal when an occurrence of a

fault attack is detected.

#* #* #* #* #*

